Study: Practice Doesn’t Always Make Perfect Memories
New research suggests that repetition—while strengthening
some aspects of memory—may interfere with our ability to remember
nuanced, specific details.
openclipart
It seems intuitive that if you want to remember something,
repetition is the key. How many of us could have survived high school
without late nights spent endlessly rehearsing historical dates or
conjugating verbs?
But a new study published in Learning and Memory
suggests that repetition—while strengthening some aspects of memory,
such as factual content and speed of recall—may interfere with our
ability to remember nuanced, specific details.
Neurobiology researchers Zach Reagh and Michael Yassa of the
University of California, Irvine presented subjects with images of
various objects, which appeared either once or three times. They then
tested the subjects’ memories of these images, but with a catch— in the
recall phase, students saw the original 300 objects, plus 100 extra
“lure” objects that were similar, but not identical, to the ones they
had seen before.
Viewing an object multiple times in the first phase hindered the
students’ ability to accurately identify the lure version of that object
later on. In contrast, viewing an object only once increased the chance
that they would be able to tell the lures apart from the original
images. When the memory was formed with repetition, it was stronger, but
the precise details grew blurrier.
Research into the way memories are encoded, stored, and retrieved in the brain has come a long way since the 1960s, when scientists began experiments with H.M.—an
epileptic patient who had large swathes of his brain, including the
hippocampus, surgically removed, and was no longer able to form
long-term memories.
Neuroscientists now widely accept that the hippocampus is
crucial for turning short-term “memory traces”—temporary changes in the
brain’s wiring that result from experience—into long-term memories, but
the debate continues over how memories are retrieved and “updated” once
they have been made, and how the act of recalling a memory affects its
content. The current study sought to explore the effects of repetition
on memory retrieval in order to better understand how the process works.
The results support the authors’ “Competitive Trace” theory, which hypothesizes that repeated instances of a learning event—such as seeing the same image multiple times—create a series of similar but not quite identical memory traces in the brain. Even though the image itself is held constant, other factors such as your attention, your emotional state, or the aspects of the image you're focusing on, will vary from one learning event to the next. So later, when you want to recall that image, all of the different memory traces have to compete with each other, and only the overlapping central features of each memory become strengthened in the brain. At the same time, all of the nonoverlapping information, the contextual detail, begins to fade.
The authors conclude that when we learn by repetition, we rely upon a sense of familiarity more than we do on an accurate recollection: “Our findings suggest that although the ability to generally recognize something is strengthened with multiple encounters, one’s ability to discriminate among similar items in memory decays... in contrast to past beliefs, repetition may reduce the fidelity of memory representations.”
So while repetition may be fine for remembering basic information or concepts, what about when it comes to remembering important scenes from our past, when the small details matter more than the overall gist? This study’s findings—if they hold true over longer periods of time, or for memories more complex than simple image recall—may have implications for the way we conceptualize memory in the classroom, on the witness stand, or in our day-to-day lives. For example, presenting evidence multiple times to those on trial could impact the detail and quality of testimonies.
Ultimately, this research reminds us that memory is not a static record of the past embedded in our neurons; it is a living, imperfect form of thinking that is constantly being rewritten, whether we intend it or not.
No comments:
Post a Comment